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Abstract 

This paper sketches a theory of scientific discoveries that is mainly based on two concepts 
that Charles Peirce developed: abduction and diagrammatic reasoning. Both are problematic. 
While “abduction” describes the process of creating a new idea, it does not, on the one hand, 
explain how this process is possible and, on the other, is not precisely enough defined to dis-
tinguish different forms of creating new ideas. “Diagrammatic reasoning,” the process of 
constructing relational representations of knowledge areas, experimenting with them, and 
observing the results, can be interpreted, on the one hand, as a methodology to describe the 
possibility of discoveries, but its focus is limited to mathematics. The theory sketched here 
develops an extended version of diagrammatic reasoning as a general theory of scientific dis-
coveries in which eight different forms of abduction play a central role. 
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Introduction 

In a recent paper, Hanne Andersen describes how physicist Ida Noddack formulated 
in 1934 for the first time the hypothesis that an experiment described by Enrico Fermi 
the same year could be explained as a case of nuclear fission (Andersen 2006). Sur-
prisingly, the scientific community at this time did not even discuss this farsighted, 
and for modern physics absolutely fundamental explanation. It passed four years be-
fore Hahn and Straßmann again proposed the hypothesis that in this experiment a nu-
cleus had split into fractions. This time, the hypothesis was immediately accepted. 

There are two questions that are interesting here with regard to the general problem 
of the possibility, and the process, of scientific discoveries: 

1. Why was Noddack’s suggestion ignored? 

2. How was it possible, that Noddack saw something in the data that others did 
not see? 

Andersen shows that the scientific community was divided into two factions in 1934. 
The vast majority of scientists assumed that artificially induced “disintegration proc-
esses had to be one nucleus transmuting into another nucleus of almost the same size 
by releasing a small particle. On this model, there was no way a nucleus could divide 
into a few large fractions” (2006, p. 16). Noddack, on the contrary, was less con-
strained by physical considerations regarding a generally accepted taxonomy of pos-
sible disintegration processes. She “was an analytical chemist who had worked for 
years searching for the still missing elements in the periodic table” (p. 23). Therefore, 
she focused first of all on the chemical properties of what has been produced by 
Fermi’s experiment. While Fermi assumed that what he produced by bombarding 
uranium with neutrons was the transuranic element of atomic number 93, the chemi-
cal properties the produced element displayed were different from what was expected 
by chemists for element 93. Andersen shows that, for Noddack, “chemical identifica-
tions clearly had much more weight in identifying the transmuted nuclei than physi-
cal expectations of possible decay series” (p. 24). This means that she felt a severe 
anomaly where “no anomaly was seen” by the majority of scientists; “and without a 
serious anomaly, there was no reason to accept a radical change of a highly success-
ful taxonomy” (ibid.). Such a change was only possible for the physicists when by the 
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end of 1938 also in another, well-investigated part of the original taxonomy a serious 
anomaly was discovered. Now there was “a gap in the taxonomy ..., ready to be 
filled” by the “new” phenomenon of nuclear fission (ibid.). 

What I want to highlight with this example is that seeing a solution presupposes see-
ing a problem. Although this may sound quite trivial, it is less so if we try to formu-
late a theory of scientific discoveries. In this case, namely, we have to clarify what it 
means “to see a problem,” and we have to develop a description of scientific activity 
in a way that the possibility of scientific discoveries can be explained within the 
framework of this description. This is the goal of this paper: to describe scientific ac-
tivity in such a way that different possibilities of creating something “new” become 
visible. 

Such a general description of the scientific method can be based on Peirce’s concept 
of “diagrammatic reasoning.” The central idea of this kind of reasoning is that we see 
problems when we try to represent what we know about something. The creative pos-
sibilities, on the other side, that are possible in such a situation can be specified by a 
distinction of different forms of what Peirce called “abduction.” This concept, that 
Peirce introduced to describe the process of forming explanatory hypotheses, is much 
better known in philosophy of science than diagrammatic reasoning (see e.g., Hanson 
1972 <1958>; Simon 1979; Nickles 1980b; Nickles 1980a; Grmek et al. 1981; Jason 
1988; Kleiner 1993; Haaparanta 1993; Meheus & Nickles 1999; Magnani et al. 1999; 
Magnani 2001; Magnani & Nersessian 2002).  

Both concepts, however, are problematic. As I will show in the first part of this paper, 
many things Peirce himself says about abduction are more confusing than helpful 
when it comes to explain how “the process of forming an explanatory hypothesis” 
(Peirce CP 5.171) might be possible. My thesis is that a more convincing approach 
can be developed when we distinguish different forms of abduction and show at 
which points they can arise in the process of diagrammatic reasoning. This will be the 
focus of the second part of this paper. The distinctions I am suggesting here are based 
on some further concepts Peirce developed for the first time: “hypostatic abstraction,” 
“theorematic deduction,” and the “theoric transformation” of a problem.  

While Peirce introduced abduction besides deduction and induction as one of “three 
elementary kinds of reasoning” (CP 8.209) that are relevant for any sort of scientific 
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inquiry (cf. CP 7.202–207; CP 6.469–476), his discussion of the other concepts men-
tioned above is limited to his philosophy of mathematics, or better: of creativity in 
mathematics. There are hardly any passages in Peirce’s writings where he combines 
both these discussions (cf. Hoffmann 2005a, pp. 203ff.). Such a combination, how-
ever, should be interesting for an understanding of creativity in science. Therefore, I 
will use the terms Peirce introduced in his philosophy of mathematics for a general 
theory of scientific discovery. 

With regard to that, the second part of this paper starts with the concept of “dia-
grammatic reasoning” and shows then which role the other concepts can play within 
this activity. Peirce defines “diagrammatic reasoning” as a three-step process: (a) 
constructing a representation, (b) experimenting with it, and (c) observing the results 
(Peirce NEM IV 47f.; cf. Stjernfelt 2000; Hoffmann 2003;  2004). The basic idea ac-
cording to my interpretation is, that by representing a problem in a diagram we can 
not only “play” with this problem, but we can also reflect on our own cognitive and 
representational means by which we approach this problem. (Cf. for an example in 
conflict management Hoffmann 2005c.) We have to represent what we know—or 
think to know—in order to see, first, its limitations and, second, new possibilities. 
This latter, creative step will be the place where abduction and the concepts “hypo-
static abstraction,” “theorematic deduction,” and “theoric transformation” enter the 
stage. Before I start, I would like to define the other concepts mentioned here because 
they are basic for the whole discussion. 

“Hypostatic abstraction” can be defined as creating a new sign for a new object by 
transforming a concrete predicate into an abstract noun. Peirce gives a nice example 
from Moliere’s Malade Imaginaire where a candidate for a medical degree answers 
the examination question “why opium puts people to sleep, by saying that it is be-
cause it has a dormative virtue” (CP 4.234, 4.463). Although this answers seems to 
absolutely ridiculous since instead  

of an explanation he simply transforms the premise by the introduction of an abstraction, an 
abstract noun in place of a concrete predicate. It is a poignant satire, because everybody is 
supposed to know well enough that this transformation from a concrete predicate to an ab-
stract noun in an oblique case, is a mere transformation of language that leaves the thought 
absolutely untouched. I knew this as well as everybody else until I had arrived at that point in 
my analysis of the reasoning of mathematics where I found that this despised juggle of ab-
straction is an essential part of almost every really helpful step in mathematics. (Peirce NEM 
IV 160) 
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For Peirce, “hypostatization” is creating an entity based on a specific sort of abstrac-
tion. While in “prescissive abstraction” we abstract from features like color and width 
to define a geometrical line, in “hypostatic abstraction” we turn what can be a predi-
cate of many things—honey is sweet, strawberries are sweet, sugar is sweet—into “a 
subject of thought” (CP 5.534): “sweetness” (CP 4.235). Since “hypostatization”—
from the Greek hypostasis—is the same as “reification” in Latin, I will use here this 
latter term which is better established today. Whether “hypostatization” or “reifica-
tion,” both concepts mean creating a new thing out of what is not a thing. 

Peirce highlights especially “the importance of this operation in mathematics.” 

(I)t will suffice to remember that a collection is an hypostatic abstraction, or ens rationis, that 
multitude is the hypostatic abstraction derived from a predicate of a collection, and that a 
cardinal number is an abstraction attached to a multitude. So an ordinal number is an ab-
straction attached to a place, which in its turn is a hypostatic abstraction from a relative char-
acter of a unit of a series, itself an abstraction again. (CP 5.534) 

“Hypostatic abstraction,” or “reification,” can either be the process of generating new 
signs that signify new objects, or the product of this process. In general, I would as-
sume that all concepts of our languages are outcomes of reification performed at 
some time in the history of our cultures. This way, reification would be one of the 
most fundamental concepts to describe the genesis of knowledge. 

Reification is also central for the next concept I mentioned above: “theorematic de-
duction.” Peirce introduced this concept as part of a discussion that treats deductive 
reasoning—surprisingly—as a creative activity (cf. Hoffmann 2005b, chap. 6). He 
puts “theorematic deduction” in contrast to “corollarial deduction” as two forms of 
“necessary deductions.” 

A Corollarial Deduction is one which represents the conditions of the conclusion in a dia-
gram and finds from the observation of this diagram, as it is, the truth of the conclusion. A 
Theorematic Deduction is one which, having represented the conditions of the conclusion in 
a diagram, performs an ingenious experiment upon the diagram, and by the observation of the 
diagram, so modified, ascertains the truth of the conclusion. (Peirce CP 2.267; cf. CP 7.204) 

The relevance of theorematic deduction again becomes obvious in mathematics. Each 
time when we perform a proof “by the introduction of auxiliary individuals into the 
argument” (Hintikka 1983 <1980>, 113, cf. 109f.), we perform a theorematic deduc-
tion. That might be a subsidiary line in geometry, or a lemma “when it comes to prov-
ing a major theorem” (Peirce EP II 96, 1901). In our terminology, the introduced 
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“auxiliary individual” would be a reification; and this reification could either be 
newly created or be transferred from another context. Peirce calls the first case an 
“abstractional” theorematic deduction, and in the second a “non-abstractional” one 
(NEM IV 49; cf. Hoffmann 2005d), but it seems to be more convincing to call the 
first one a “creational theorematic deduction” and the second one an “analogical 
theorematic deduction” since we take over a reification that has been created for an-
other purpose. Introducing the term “fission,” for example, into a deductive argument 
in nuclear physics would be a case of “analogical theorematic deduction” since “fis-
sion” has already been used earlier in biology to describe “the division of a cell or 
organism into new cells or organisms, as a mode of reproduction,” and in astronomy 
as the “breaking up of one star into two others, as postulated in one theory of the ori-
gin of binary stars” (Oxford English Dictionary). 

The last Peircean term I will discuss here as interesting to describe scientific discov-
eries is “theoric transformation.” In spite of the word’s similarity to “theorematic,” it 
is very different. While “theorematic” seems to be coined from “theorem,” “theoric” 
refers for Peirce to the Greek “qewría” (our “theory,” original meaning: “vision”). 
He translates this term as “the power of looking at facts from a novel point of view” 
(Peirce MS 318: CSP 50 = ISP 42). “Theoric” reasoning consists “in the transforma-
tion of the problem,—or its statement,—due to viewing it from another point of 
view” (ibid., CSP 68 = ISP 225). Thus, a “theoric transformation,” or a “theoric step” 
in a deductive argument, means changing the perspective. We are looking at the same 
data, or the same representation, but in a way that opens up completely new horizons 
of interpretation. Peirce hints at the well-known fact that especially developing the 
idea of a proof in mathematics often depends on a “theoric” shift (CP 4.612). At sev-
eral points he uses the proof of Desargues’ theorem in projective geometry as an ex-
ample of how a theoric transformation works (cf. my analysis in Hoffmann 2005a, 
pp. 170-186; Hoffmann 2005d). But we can use this concept also beyond the limits of 
mathematics. For example, when Aldo Leopold saw for the first time that ecological 
relations are not simply causal relations—remove the wolves to enlarge the deer 
population—but that he has “to think like a mountain” in order to being able to man-
age an ecosystem as a multi-dimensional configuration (Norton 2005, p. 213ff.), he 
performed a “theoric transformation,” a “perceptual shift” (219). 
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Abduction 

The problems we are facing with Peirce’s concept of abduction can be illustrated 
when we simply take a look at one his best known definitions of this term (I am refer-
ring here only to what he developed after 1900 since many of his earlier considera-
tions are insufficient, as he admits for himself: Peirce L 409, ISP 73; CP 2.102, 8.227; 
cf. Hoffmann 2005b, pp. 187ff.):  

Abduction is the process of forming an explanatory hypothesis. It is the only logical opera-
tion which introduces any new idea; for induction does nothing but determine a value, and 
deduction merely evolves the necessary consequences of a pure hypothesis. (Peirce CP 
5.171) 

The second half of this quote is not part of the definition, but an explanation for it. 
However, it adds something to this definition because it says implicitly that there are 
only three logical operations for Peirce, a claim that he confirms in another remark 
where he says that “there are but three elementary kinds of reasoning”: abduction, 
deduction, and induction (CP 8.209). This means, however, that any form of “reason-
ing,” or “logical operation,” that is neither deduction nor induction has to be abduc-
tion; and that might be much more than we would expect at a first glance. According 
to Peirce, we find abduction not only in science as the process of “examining a mass 
of facts and in allowing these facts to suggest a theory” (CP 8.209), but also in any 
perception “when I so much as express in a sentence anything I see” (Peirce LOS, p. 
899f.; cf. CP 5.182ff., 8.64). Even when “a chicken first emerges from the shell” and 
“does not try fifty random ways of appeasing its hunger, but within five minutes is 
picking up food, choosing as it picks, and picking what it aims to pick,” this is “just 
like abductive inference” (Peirce LOS, p. 899f.). This unspecified broadness of pos-
sibilities to apply the concept of abduction has led to many attempts in the literature 
to develop classifications of different forms of abduction (e.g., Bonfantini & Proni 
1983; Eco 1983; Shank & Cunningham 1996; Magnani 2001).  

A second problem concerns the claim that abduction is supposed here to be a “logical 
operation” (cf. Kapitan 1992). Elsewhere I showed that this claim can only be con-
vincing if we start from one of two possibilities: either from a very broad understand-
ing of “logic,” for example “logic” defined as “the art of devising methods of re-
search,—the method of methods” (CP 7.59; cf. 3.618, 4.227; Fann 1970, p. 23f.); or 
we interpret “logical operation” as referring only to the form Peirce uses to describe 
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abductive reasoning, but not to the creative act of “forming an explanatory hypothe-
sis” (cf. Hoffmann 1999). This second possibility is evident when we look at the fa-
mous “perfectly definite logical form” of abduction the late Peirce defined as follows: 

 (P1)  “The surprising fact, C, is observed;” 

 (P2)  “But if A were true, C would be a matter of course,” 

 (C)  “Hence, there is reason to suspect that A is true” (CP 5.189). 

Peirce himself states in the next sentence that according to this form “A cannot be 
abductively inferred ... until its entire content is already present” in the second prem-
ise. That means, however, that the logical form for itself leaves the question unan-
swered how to get the hypothesis “A.” There is no way to create a new hypothesis by 
a logical inference. “The first emergence of this new element into consciousness must 
be regarded as a perceptive judgment” (CP 5.192). Only after the new hypothesis has 
emerged, we can connect “this perception with other elements” (ibid.) in a logical 
form like the one quoted above.  

However, if we accept this distinction between “inferential aspects of abduction” and 
the creative, “perceptive aspects of abduction” (Hoffmann 1999, p. 280), then it is 
hard to see how abduction can be the “the only logical operation which introduces 
any new idea” as Peirce claims in our initial quote (my emphasis). This claim could 
be justified only if “logical operation” means simply “method,” or “strategy” (cf. 
Paavola & Hakkarainen 2005). Otherwise we would get a contradiction to what we 
discussed just a moment ago. 

The third problem of this famous quote concerns the question what exactly abduction 
is supposed to do. In the quote, Peirce hints, on the one hand, at the “the process of 
forming an explanatory hypothesis” and, on the other, at introducing a “new idea.” 
This, however, allows different interpretations. First, it is possible that the two con-
cepts refer to two different operations, because we can form an “explanatory hy-
pothesis” without generating a “new idea.” If any perception is a case of abduction, 
we would generate a lot of “explanatory hypotheses” regarding sensory inputs though 
hardly any “new idea.” For example, when reading a word, the word we read is a hy-
pothesis that “explains” a sequence of letters. In this case, we form an explanatory 
hypothesis without introducing a new idea since the idea we associate with a certain 
sequence of letters exists already in our mind.  
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Second, it is not clear whether the “idea” we introduce is only new for us as individu-
als or new for our civilization. And third, an “idea” can either be what we discussed 
above as the result of a “reification,” that is something that can be represented by a 
singular concept, or by a symbol, or it could be a new perspective on the same data as 
produced by a “theoric transformation.” In sum, Peirce’s innocent and well-known 
definition can describe six very different forms of abduction (cf. Table 1). 

 
 If “idea” means something 

that can be represented by a 
singular symbol 

(based on reification) 

If “idea” means the  
perspective on data, or on a 

representation 
(theoric transformation) 

If an explanation is possible 
by referring to an idea that 
exists already in our mind 

identifying 
abduction 

Gestalt shift 

If we create an idea that is 
new for us, but that exists 
already as a part of our cul-
ture’s knowledge 

analogical 
reifying 

abduction 

analogical 
theoric 

abduction 

If we create an idea that is 
entirely new 

creational reifying 
abduction 

creational theoric 
abduction 

Table 1: Six forms of abduction that are possible based on CP 5.171 alone 

At this point we can already see that by means of the concepts Peirce developed in 
his philosophy of mathematics we can specify some important distinctions that might 
be overlooked without this terminology. The four creative forms of abduction listed 
in the second and third row of the above table will be very useful later on.  

Peirce himself does not specify different forms of abduction precisely enough. How-
ever, what is important is his description of the general situation in which abduction 
takes place. This situation can be determined by two points: (a) abduction starts from 
the particular as it is given in perception, and (b) it leads to something general. This 
general might be, first, a hypothesis, or a theory that is “needed to explain ... surpris-
ing facts” (CP 7.218) or, second, “a statement of fact” by which we “make intelligi-
ble” any image provided by perception (LOS 899) or, third, an activity that is driven 
by a general habit, or an “instinct,” like the behavior of the chicken mentioned above 
that from early on picks the right things (ibid.).  

Two things are important to note: on the one hand, that this general itself is, as Peirce 
once said, “in no wise contained in the data from which it sets out”; it is “entirely for-
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eign to the data” (LOS, 898f.); and, on the other hand, that “there is no force” in this 
process leading from the particular to the general (CP 8.209), meaning that—maybe 
except in cases of perception and instinct-driven behavior—it is not predetermined 
what the general exactly will be by which we react to a certain particular event or 
situation. 

Having no force on the one hand but being more successful than could be expected 
by chance on the other (CP 5.172, 5.591), leads to the question how our ability to in-
fer abductively can be explained. Peirce himself hints at many places at an “instinc-
tive” power of “guessing rightly” (cf. Rescher 1995; Fann 1970, pp. 35–38; Paavola 
& Hakkarainen 2005), and also at “the uncontrolled part of the mind” (CP 5.194; cf. 
Semetsky 2005). But since none of these approaches is sufficiently elaborated, the 
possibility of abduction remains at the end unexplained. In this situation, we should 
focus on methods that might, at least, facilitate abduction. Just this is the role “dia-
grammatic reasoning” can play in a general theory of scientific discoveries. 

Diagrammatic reasoning 

The essential feature of diagrammatic reasoning that makes this method so interesting 
for the description of scientific discoveries is not the three-step process I mentioned 
above as its definition: constructing a diagram, experimenting with this diagram, and 
observing the results (Peirce NEM IV 47f.). The essential point is rather that the 
whole process has to be performed by means—and within the limits—of a given 
“system of representation” (CP 4.418). When Peirce defined a “diagram” as “a repre-
sentamen which is predominantly an icon of relations” that “should be carried out 
upon a perfectly consistent system of representation” (CP 4.418), he worked on a se-
ries of definitions to formulate the foundations of his so-called “Existential Graphs,” 
a graphical notation of logic intended to replace algebraic notations (cf. Roberts 
1973; Ketner 1996 <1990>; Shin 2002). This system of representation is character-
ized by a set of conventions to represent propositions and logical relations between 
those propositions, and a set of rules for the transformation of graphs. From a logical 
point of view, Peirce’s Existential Graphs—at least the Alpha and Beta Part—are as 
sound and complete as symbolic systems of logic. 

There is no question that one needs “a perfectly consistent system of representation” 
for representing logical implications and validity, and the same is true for representa-



 11

tion systems in mathematics. (Although we know now that there is a principle limit of 
consistency and completeness imposed on us by Gödel’s incompleteness theorems.) 
If we want to prove in Euclidean geometry, for example, that the triangle’s inner an-
gles sum up to 180°, we can use a parallel to the triangle’s base as auxiliary line to 
perform the proof. The possibility of such a parallel, however, is provided only in 
Euclidean geometry, not in non-Euclidean ones. That is, the specific means available 
in this system of representation determine the outcome of any transformation of a 
Euclidean figure we perform in accordance with the rules of this system. At the same 
time, however, those operations are also constrained by the means available. If we 
change the system of representation—as has been done in the development of non-
Euclidean geometries—we open up entirely new possibilities (cf. Hoffmann 2004). In 
short, a proof in mathematics is only as perfect and consistent as the representation 
system in which it is performed. 

The consistency of representation systems is also essential when we use the concept 
of diagrammatic reasoning—beyond the limits of logic and mathematics—for a gen-
eral theory of scientific discoveries. Not only axiomatic systems in mathematics have 
to be consistent, but also, for instance, the description of styles in art, the grammar we 
construct to understand the syntax of our everyday languages, and theories in science. 

Besides consistency, there are two further features that are common to all those sys-
tems of representation. On the one hand, we need them to design a particular repre-
sentation. We need an axiomatic system to construct a proof in mathematics; we need 
a scientific theory to formulate a hypothesis or observational statement; we need the 
grammar of our everyday language to formulate a normal sentence; and we need a 
style to draw a painting in art—although in both the latter cases knowledge about the 
system of representation might be mostly implicit. On the other hand, all these sys-
tems of representation play a normative role: in logic and mathematics we can check 
the validity of an inference, or a proof, by means of the rules and conventions defined 
by a certain system of representation; in science the plausibility of a particular state-
ment depends on its theoretical background; in our everyday languages the correct-
ness of expressions is determined by grammar; and in art the definition of styles is a 
means of classification, for example. 
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Figure 1: A definition of diagrammatic reasoning. All maps are created with 
IHMC Cmap tools: http://cmap.ihmc.us/ 

The central role of the chosen representation system for diagrammatic reasoning be-
comes visible when we consider its function for each of the three steps by which dia-
grammatic reasoning can be defined (cf. Figure 1). As this “map definition” of dia-
grammatic reasoning shows, the outcome of each of the three steps depends—in dif-
ferent ways—on the system of representation we choose in a certain situation to rep-
resent a problem, or the knowledge area we are focusing on. 

The consistency and normativity of the chosen system of representation are decisive 
when it comes to the possibility of discoveries. Peirce once highlighted as a core idea 
of this pragmatism that all reasonings—and especially mathematical reasonings— 
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turn upon the idea that if one exerts certain kinds of volition, one will undergo in return cer-
tain compulsory perceptions. Now this sort of consideration, namely, that certain lines of 
conduct will entail certain kinds of inevitable experiences is what is called a “practical con-
sideration.” (CP 5.9) 

Such an “inevitableness” depends obviously on the normative character of the repre-
sentational system in which such reasoning is performed, as is evident from mathe-
matics: That 2 plus 2 equals 4 results from the rules and conventions of arithmetic as 
the chosen system of representation.  

This “inevitable experience” resulting from rule-driven activity is the most important 
precondition of discovering something new by diagrammatic reasoning. As I showed 
elsewhere with regard to mathematics, we can distinguish two possibilities: on the 
one hand, the process of unfolding new implications of a diagram within a given sys-
tem of representation and, on the other, the process of developing representational 
systems themselves that can open up new horizons and possibilities—as it has been 
the case in the development of non-Euclidean geometries (Hoffmann 2004).  

The first case refers to the fact that we never can have a complete overview of all the 
implications of what we know already. Only experimentation with representations in 
concrete situations reveals what might already be given implicitly in our own systems 
of knowledge. Peirce described this case of discovering something new by saying that 
a diagram constructed by a mathematician “puts before him an icon by the observa-
tion of which he detects relations between the parts of the diagram other than those 
which were used in its construction” (NEM III 749). By experimenting upon the dia-
gram and by observing the results thereof, it is possible, as he says, “to discover un-
noticed and hidden relations among the parts” (CP 3.363).  

The second case is closely connected with the problem of consistency. It might be 
that a rule-driven experimentation with diagrams brings to light inconsistencies or 
undecidable situations within our chosen system of representation. If we don’t have 
any reason to doubt the correctness of the diagrammatic transformations we have per-
formed, we are forced to improve the system of representation we have used. 

In this situation, the compelling character of diagrams and the “inevitable experience” 
we make in diagrammatic reasoning are decisive. The results of experiments have to 
“stand up against our consciousness,” as Hull (1994, p. 282) puts it, because only in 
this case can a diagram “compel us to think quite differently” (CP 1.324). It is only if 
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we already have certain expectations concerning what should happen in processes of 
diagrammatization that there is a need to develop something new when those expec-
tations are frustrated. 

For a general theory of scientific discovery which goes beyond the limits of logic and 
mathematics, we can start from a critique Peirce formulated once with regard to Kant. 
Kant saw already that in mathematics the drawing of “necessary consequences” is 
possible because “the mathematician uses what, in geometry, is called a ‘construc-
tion,’ or in general a diagram, or visual array of characters or lines” (CP 3.560). But 
while for Kant the use of constructions is the criterion to distinguish been mathemat-
ics and philosophy (Kant CPR B 741), Peirce insists that there is no difference be-
tween both when it comes to the central role of “constructions,” or “diagrams”: 

All necessary reasoning whatsoever proceeds by constructions; and the only difference be-
tween mathematical and philosophical necessary deductions is that the latter are so exces-
sively simple that the construction attracts no attention and is overlooked. (CP 3.560; cf.. 
5.147f.) 

All necessary reasoning without exception is diagrammatic. That is, we construct an icon of 
our hypothetical state of things and proceed to observe it. This observation leads us to suspect 
that something is true, which we may or may not be able to formulate with precision, and we 
proceed to inquire whether it is true or not. (CP 5.162) 

The connection between “necessary reasoning” and “diagrammatic reasoning” results 
from the normative character of the representation system used, as we saw above. 
However, if we try to generalize what is plausible with regard to mathematics, we are 
facing a serious problem. While we can hardly overemphasize the role of representa-
tions in any science, it is harder to determine what exactly the “systems of representa-
tion” in science are that we need to explain the possibility of scientific discoveries by 
means of diagrammatic reasoning. While in mathematics and logic we can mostly 
formulate a clear distinction between a “consistent system of representation” (e.g., an 
axiomatic system, or a notation) and a “diagram” constructed by means of this sys-
tem, this is not so easy in the sciences. Of course, we could say that any science uses 
different—more or less formal—languages so that its representations depend on the 
“grammar” of those languages. But just this is part of the problem. There are quite a 
lot of those “languages,” and they are more or less relevant for what happens in sci-
entific activity. We would assume, for example, that it does not matter whether we 
formulate Einstein’s theory of relativity in English or in Chinese. Sometimes, how-
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ever, it matters, for example when we formulate a sociological theory that is based on 
ideas, or concepts, for which there is no equivalent in another culture. And it matters 
of course that we need for Einstein’s theories the language of mathematics; some-
times mathematical theories must be developed before there is progress in physics. 

The problem is, thus, that there are very different systems of representation that we 
often use at the same time when representing scientific knowledge, and that not all of 
them determine and constrain the possibilities of scientific activities in the same way 
as the Euclidean language determines proof possibilities in geometry. It seems to be 
impossible to propose a classification of all systems of representation we are using in 
different disciplines, and to determine in general which is relevant in which way. The 
problems we had to face for such an endeavor would be similar to the problems Tho-
mas S. Kuhn faced when forced to clarify his concept of “paradigm” which is—at 
least with regard to its normative character—pretty similar to our concept of “repre-
sentation system.” 

The only way I can see to cope with this problem is not to start with a “top down” 
classification of representation systems, but to proceed “bottom up.” It should be suf-
ficient to define the term “system of representation” only formally as that consistent 
set of conditions we have to presuppose to understand a representation, and to look at 
diagrammatic representations themselves guided by the question ‘What kind of repre-
sentation system do we need to make sense out of this expression?’. When we read a 
scientific text in which Sun, Moon, and Mars are called “planets,” for example, a 
consistent representation system that could produce such an utterance would be the 
Ptolemaic astronomy, but not the Copernican system of representation with its classi-
fication of celestial bodies (Chen et al. 1998, p. 9).  

From a general point of view, the term “system of representation” refers first of all to 
those conditions of understanding. Therefore, those systems can only be determined 
based on an analysis of concrete representations, they are relative to what they are 
supposed to determine. It depends on the concrete diagram what we have to identify 
as a relevant system of representation. Relevant is what we need to understand the 
diagram. 

In order to show how, based on these considerations, the possibility of scientific dis-
coveries can be explained, I suggest extending the definition of diagrammatic reason-
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ing proposed in Figure 1 above. We have to continue the series of steps that are de-
scribed in this definition. A complete description of what follows after the third step 
described in Figure 1 is presented in Figure 2. Remember, the first three steps that are 
already mentioned by Peirce are: constructing a diagram, experimenting with it, and 
observing—and analyzing—the outcome of those experiments. The continuation of 
the process depends, obviously, on the result of the third step. As elaborated in Figure 
2, we can distinguish three possible results, each combined with a certain implication 
that will then again lead—at least in two cases—to further steps.  

The basic ideas of this enlarged model of diagrammatic reasoning can be summarized 
as follows: 

1. There is only one situation in which the process of diagrammatic reasoning 
comes—temporarily—to a halt: when we get the first possible result of ob-
serving and analyzing the outcome of an experiment, that is “the outcome 
does not contradict our expectations” (see Figure 2). In this situation we see 
that what we observe in the experiment is a necessary implication of the origi-
nal diagram, and we can be happy that no contradiction occurs. There is no 
reason to continue the process. We learned something new, although nothing 
that could surprise us. It is like proving that the triangle’s inner angles sum up 
to 180° when nobody thought about that before. It is interesting, but no reason 
to doubt the reliability of our cognitive and representational means. 

2. Everything else besides this first possibility leads over a series of further steps 
finally back again to the first step, the construction of a diagram. This means, 
the whole process is with regard to the activities described in Figures 1 and 2 
an endless loop that stops only when the situation mentioned in (1.) occurs. 
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Figure 2: The process of diagrammatic reasoning, extended version,  
continuing the series of three steps described in Figure 1. 

3. However, regarding the representational means available, each of these loops 
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continues with the first step on a more advanced level: we are either able to 
construct a new diagram by the means of the representation system that we 
used already from the very beginning, or we are able to construct a new dia-
gram based on a new system of representation. 

4. The possibility of such an advancement is the result of scientific discoveries 
that are differentiated in this model as eight forms of abduction (1. to 8. in the 
second half of Figure 2). The terminology according to which these forms are 
classified goes back to the concepts “reification” and “theoric transformation” 
as defined at the end of the introduction, and to the terms I coined based on 
that with regard to abduction in Table 1. Each of these forms of abduction 
enlarge the set of representational—and therefore also: cognitive (cf. 
Hoffmann & Roth forthcoming)—means available for diagrammatic reason-
ing. 

5. The distinction of all the possibilities differentiated in Figure 2 is based on an 
analytical interest to separate different forms of scientific discoveries—or ele-
ments of those discoveries—as clear as possible. In practice, however, these 
forms will usually be intertwined, I guess. 

This leads us back again to our starting point, the historical example I discussed in 
the beginning. It is interesting to see that the majority of physicists’ “blindness” re-
garding the possibility of nuclear fission in 1934 can directly be ascribed to the limi-
tations of the predominantly used “system of representation.” The “diagrams and no-
tations which were developed,” says Anderson with reference to some diagrams pub-
lished by Meitner in 1934, “could only represent the idea that a projectile hits a nu-
cleus which as a result transformed into another nucleus by the emission of a parti-
cle” (Andersen 2006, p. 7). The majority of physicists was convinced by the obvious 
harmony between the taxonomy of disintegration processes mentioned above and 
“Gamow’s theory of decay which precluded decay products larger than the α-
particle” (ibid.). The thesis “that only particles up to the size of the α-particle could 
be emitted would become tacitly accepted in the whole scientific community to such 
an extend that the mere possibility of larger decay products [and, therefore, also the 
possibility of nuclear fission, M.H.] would never be mentioned” (ibid.). Background 
assumptions like this one form a “system of representation” in so far as they can be 
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identified as those conditions that make concrete “diagrams,” that is any scientific 
utterance formulated in this context, understandable. 

The idea of splitting the nucleus into larger fragments was simply beyond the possi-
bilities of those representational means, and since hardly anybody saw a need to 
doubt this well-established system of representation, there was no room for a discov-
ery as far reaching as that of nuclear fission. Seeing a solution presupposes seeing a 
problem. This way, the majority of scientists was happy with what is described in 
Figure 2 as the first possible result of observing the outcome of experiments with 
diagrammatic representations. They learned something new through Fermi’s experi-
ments, but no big surprises. 

For Ida Noddack, on the other side, the broadly accepted assumption of Fermi’s that 
he produced in his experiments a transuranic element directly contradicted her expec-
tations. These expectations, however, were based on a different system of representa-
tion: not the taxonomy of “disintegration processes” that fitted so well to Gamow’s 
theory, but a system of representation that she developed over the years when work-
ing on the chemical properties of elements that were yet to be discovered. In this 
situation of seeing a severe problem regarding the consistency between her predomi-
nant system of representation and what Fermi described, she did not doubt this sys-
tem, but the assumption of Fermi’s. To formulate it in the language of my extended 
model of diagrammatic reasoning (cf. Figure 2), she started “to doubt the consistency, 
completeness, or adequacy” of a possible diagram that—constructed by the means of 
her own system of representation—should be able to include Fermi’s thesis. In this 
situation, she performed what can be described as the third form of abduction counted 
in Figure 2: an “analogical theoric abduction.” Since she writes in her paper that 
heavy nuclei might “decay” when bombarded with neutrons (“Es wäre denkbar, daß 
bei der Beschießung schwerer Kerne mit Neutronen diese Kerne in mehrere größere 
Bruchstücke zerfallen, die zwar Isotope bekannter Elemente, aber nicht Nachbarn der 
bestrahlten Elemente sind”; Noddack 1934), it is clear that she looks at the experi-
ment—compared to Fermi—from “a novel point of view,” that is she performs what 
Peirce calls a “theoric transformation.” And since the idea of “decay” occurs in many 
areas of experience, it is not a “creational theoric abduction,” but an “analogical” one. 
If she had already coined a new term like “Kernspaltung” (nuclear fission) for what 



 20

she hypothesized based on this analogical theoric abduction, she would have per-
formed additionally a form of “reifying” abduction. 

The essential point is, however, that each of these eight possible forms of abduction 
leads to an enlargement of the representational and cognitive means that are then 
available for further processes of diagrammatic reasoning. And this again is what sci-
entific progress is all about. 
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